
Heta language: Modularity and Reusability in QSP
modeling platforms

Evgeny Metelkin

InSysBio, Moscow, Russia

PIA-010 9-13 November 2021, ACOP 12, Virtual

Heta project homepage:

https://hetalang.github.io

REFERENCES & CONTACTS

Open source QSP platforms (shared on GitHub)

• Demo example of QSP platform developed with Heta and qs3p-js.

https://github.com/insysbio/heta-case-mini/

• Platform describing Fatty Acid Amide Hydrolase inhibition in human.

https://github.com/insysbio/faah-inhibitor

• Model describing SARS-CoV-2 virus and host cell life cycles

https://github.com/insysbio/covid19-qsp-model

• PBPK Modeling For Therapeutic Nanoparticles Loaded With Drug

https://github.com/insysbio/drug-loaded-nanoparticles

MORE EXAMPLES

MOTIVATION & OBJECTIVES

The size and complexity of mechanistic Systems Biology (SB) and Quantitative Systems Pharmacology (QSP) models

continue to increase. The typical modern QSP model includes hundreds components and is based on many experimental

findings and literature data.

The size is a challenging problem for efficient handling such models and modeling platforms because of several reasons:

- Large-scale models is not easy to modify because it requires reviewing of many items and mathematical expressions
to find and update the required one.

- Debugging and testing models require substantial resources.

- Large models are usually created by teams. Working with a model as a whole it is hardly to develop the effective
modeling workflow.

- Simulation and analysis requires substantial time.

The modularity which is a typical approach in software engineering might be a solution for the SB/QSP modeling

problems. The decomposition of the whole modeling code into smaller parts allows working more effectively, to share

job within team and to reuse code in many projects.

This study presents the approach for modularity implemented in the Heta modeling language. The approach can be

effectively applied for Heta-based modeling platforms and implemented in many simulation tools like Matlab,

Simbiology, Mrgsolve, HetaSimulator.jl, and others.

Heta is a human-readable and writable modeling language for Quantitative Systems Pharmacology

(QSP) and Systems Biology (SB).

Heta language represents the dynamic model in a process-description format i.e. as interacting

components that describe volumes, concentrations, amounts, rates, and others. The Heta code can be represented as

ordinary differential equations (ODEs) in-place.

Features:

- Human-readable/writable code can be used for model creation, modification, or integration.

- Easy code parsing and transformation for potential implementation into different tools and frameworks.

- Modularity: QSP platform can be subdivided into several files and spaces for better project management.

- Reusability: modeling platforms should be easily extended for other projects.

- Reach annotation capabilities for better code revision and reporting.

- Simple transformation to popular modeling formats: Matlab, R, Simbiology, DBSolve, SBML, etc.

HETA LANGUAGE

INCLUDE

INSERT, #UPDATE, #DELETE

dev@insysbio.com

http://insysbio.com

Video tutorial

https://rb.gy/xgpkft

GitHub repository

hetalang/heta-compiler

IMPORT + RENAME

intracell.heta

index.heta

The modules in Heta platforms are files of one of supported types. One of the files (usually having name index.heta) is used as an entry
point for platform compilation. The content of other files can be attached to platform using the #include action.

• #include acts like we put the code from one module into another one.
• Any module can include another modules. It is possible to organize a hierarchical module structure with many files and directories.
• There are several module’s types: Heta code, Excel table, JSON/YAML or SBML. We can use a hybrid Heta platform. Part of the platform

will be written in Heta code, another part in SBML,excel files etc.
• Modules may be developed by team members or taken from external sources.

Conclusion: The “include” mechanism allows to split the whole code into any number of separate files.
Combining modules one can create different models.

NAMESPACE

IMPORT, # IMPORTNS

cell-dynamics.heta

m1

cell_vol

m2

vsyn_m1 v_m1_m2 vtr_m2

cell_count

blood v_prol

Conclusion: Heta format allows to update components without changing the source code. This is powerful
mechanism to tune model created from shared building blocks.

m1

cell_vol

m2

vsyn_m1 v_m1_m2

cell_count

blood v_prol

m3
vtr_m2

#insert, #update and #delete are three base actions for modification of model components. They are used correspondently to
include/replace, change properties and delete component by selecting id.

• The actions modify components declared above code part including those loaded from modules.
• This mechanism allow to modify a modeling platform without rewriting the original source code.

index.heta (updated)

The namespace in Heta standard is a way to create several models in one modeling platform. The models can share some parts or
components or be independent.
• Namespace is a storage of components availably by an identifier.
• There is a default namespace with the id “nameless” created at platform initialization.
• A user can create any number of namespaces using the namespace statement or the #setNS action.

Conclusion: Namespaces allow to reuse modules for different models of the same platform. This can be helpful when it is
necessary to use model variants applicable for in vitro, animal species and human body conditions.

m1

cell_vol

m2

vsyn_m1 v_m1_m2 vtr_m2

m1

cell_vol

m2

vsyn_m1 v_m1_m2

cell_count

blood v_prol

m3
vtr_m2

intracell
namespace

nameless
namespace

index.heta (updated)

p
la

tf
o

rm

A namespace content can be copied into another namespace using #importNS action. It is also possible to borrow one or several
components with the #import action.
• The #importNS action copies all namespace’s content into another one. The components with the same id will be merged.
• The #import action copies a single component.

Conclusion: It is possible to reuse not only modules but namespaces too. It is the easiest way to create
model’s variants in the same platform or to borrow some necessary components from another model.

#importNS

#importNS and #import actions have a series of additional properties which can be used to modify copied elements “on-the-fly”. This
approach can be used for creating repeated modeling structures.
• The “prefix” and “suffix” properties updates identifiers of all copied components with a simple rule.
• The “rename” property is the way how the identifiers can be updated manually one by one.

Conclusion: It is possible to create really complex models with #importNS action writing very simple code. It is
not necessary to write similar model parts many times.

m1_1

cell_vol_1
m2_1

cell_count_1
blood

m3
m1_2

cell_vol_2
m2_2

cell_count_2

m1_3

cell_vol_3
m2_3

cell_count_3

https://hetalang.github.io/
https://github.com/insysbio/heta-case-mini/
https://github.com/insysbio/faah-inhibitor
https://github.com/insysbio/covid19-qsp-model
https://github.com/insysbio/drug-loaded-nanoparticles
https://www.youtube.com/playlist?list=PLUBqQmGMDNHLtHM4DaflBi3TzF3_rZpsj
https://github.com/hetalang/heta-compiler
https://www.youtube.com/playlist?list=PLUBqQmGMDNHLtHM4DaflBi3TzF3_rZpsj
https://github.com/hetalang/heta-compiler
http://insysbio.com/
https://hetalang.github.io/#/

